博客
关于我
HDU - 4597 Play Game (博弈 + 区间dp)
阅读量:284 次
发布时间:2019-03-01

本文共 2593 字,大约阅读时间需要 8 分钟。

Alice和Bob在玩一个拿卡片的游戏,有两个堆,每个堆有N张卡片。每张卡片都有一个分数。他们轮流从任意一堆的顶部或底部拿走一张卡片,拿走的卡片分数会加到自己的总分里。目标是找出Alice能拿到的最大可能分数,因为他先开始。

思路

这个问题可以通过动态规划和记忆化搜索来解决。我们需要记录每个可能的状态,也就是每个堆剩下的卡片情况,以及当前是Alice还是Bob的回合。使用四维数组dp[i][j][p][q]表示在当前状态下,玩家能够获得的最大分数。

  • 状态定义dp[i][j][p][q]表示第一个堆剩余ij张卡片,第二个堆剩余pq张卡片时,当前玩家能够获得的最大分数。
  • 递归关系:当前玩家可以选择四种操作:拿走第一个堆的第一个或最后一个卡片,或者拿走第二个堆的第一个或最后一个卡片。每种选择都会导致对方玩家在新的状态下选择最优策略。
  • 记忆化:避免重复计算相同的状态,使用记忆化技术存储已经计算过的结果。
  • 解决代码

    #include 
    using namespace std;typedef long long ll;const int inf = 0x3f3f3f3f;int N = 25;int a[N], b[N];int dp[N][N][N][N];int n;ll dfs(int i, int j, int p, int q) { if (i > j && p > q) return 0; if (i <= j && p <= q) { int res = 0; if (i <= j) { res = max(res, dfs(i+1, j, p, q) + a[i]); res = max(res, dfs(i, j-1, p, q) + a[j]); } if (p <= q) { res = max(res, dfs(i, j, p+1, q) + b[p]); res = max(res, dfs(i, j, p, q-1) + b[q]); } dp[i][j][p][q] = res; return res; } if (i <= j) { ll take_a = a[i]; ll take_b = a[j]; ll option1 = dfs(i+1, j, p, q) + take_a; ll option2 = dfs(i, j-1, p, q) + take_b; dp[i][j][p][q] = max(option1, option2); } if (p <= q) { ll take_a = b[p]; ll take_b = b[q]; ll option3 = dfs(i, j, p+1, q) + take_a; ll option4 = dfs(i, j, p, q-1) + take_b; dp[i][j][p][q] = max(dp[i][j][p][q], option3, option4); } return dp[i][j][p][q];}int main() { int t; scanf("%d", &t); for(int _ = 0; _ < t; _++) { n = 0; int sum = 0; for(int i = 0; i < n; i++) { sum += a[i]; } for(int i = 0; i < n; i++) { sum += b[i]; } for(int i = 0; i < n; i++) { a[i] = 0; } for(int i = 0; i < n; i++) { b[i] = 0; } n = 0; scanf("%d", &n); for(int i = 0; i < n; i++) { int x; scanf("%d", &x); a[i] = x; } for(int i = 0; i < n; i++) { int x; scanf("%d", &x); b[i] = x; } int dp[N][N][N][N]; memset(dp, 0, sizeof(dp)); ll total = 0; for(int i = 0; i < n; i++) { total += a[i]; } for(int i = 0; i < n; i++) { total += b[i]; } ll res = dfs(0, n-1, 0, n-1); cout << res << endl; } return 0;}

    代码解释

  • 输入处理:读取测试用例数T,然后处理每个测试用例,读取N、数组a和数组b。
  • 动态规划数组初始化:使用四维数组dp存储每个状态的最大分数。
  • 递归函数dfs:计算当前状态下的最大分数,考虑四种操作,递归调用,并使用记忆化存储结果。
  • 输出结果:对每个测试用例,调用递归函数并输出结果。
  • 通过这种方法,我们可以高效地解决问题,确保Alice能获得的最大分数。

    转载地址:http://kcio.baihongyu.com/

    你可能感兴趣的文章
    NetworkX系列教程(11)-graph和其他数据格式转换
    查看>>
    Networkx读取军械调查-ITN综合传输网络?/读取GML文件
    查看>>
    Net与Flex入门
    查看>>
    net包之IPConn
    查看>>
    NFinal学习笔记 02—NFinalBuild
    查看>>
    NFS共享文件系统搭建
    查看>>
    nfs复习
    查看>>
    NFS网络文件系统
    查看>>
    ng 指令的自定义、使用
    查看>>
    nginx + etcd 动态负载均衡实践(二)—— 组件安装
    查看>>
    nginx + etcd 动态负载均衡实践(四)—— 基于confd实现
    查看>>
    Nginx + Spring Boot 实现负载均衡
    查看>>
    Nginx + uWSGI + Flask + Vhost
    查看>>
    Nginx - Header详解
    查看>>
    Nginx Location配置总结
    查看>>
    Nginx upstream性能优化
    查看>>
    Nginx 中解决跨域问题
    查看>>
    Nginx 动静分离与负载均衡的实现
    查看>>
    Nginx 反向代理 MinIO 及 ruoyi-vue-pro 配置 MinIO 详解
    查看>>
    Nginx 反向代理解决跨域问题
    查看>>